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COMMENT 
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Abstract. The linear Hamiltonian structure of ‘modified’ shallow-water wave equations 
goes to the non-linear and second Hamiltonian structure of the bi-Hamiltonian shallow- 
water wave equations. A similar situation must exist for gas dynamics according to a result 
of Dubrovin and Novikov. 

1. Introduction 

Miura (1968) proposed a remarkable non-linear map taking solutions of the modified 
Korteweg-de Vries ( M K d v )  equation to those of the Korteweg-de Vries ( K d v )  equation 
itself. Wadati and Sogo (1983) found a Miura map relating one of the many modified 
non-linear Schrodinger equations ( M N L S )  to the original NLS (see Clarkson and Cos- 
grave (1987) for a catalogue of MNLS).  Finally, Kupershmidt (1985), as part of a 
profound study of the Hamiltonian structures of dispersive water waves, presented a 
general form of all Miura maps. 

In Verosky (1987), the relationship between the NLS and the shallow-water wave 
equations (sww) 

U, + vu, + ux = 0 U, + uu, + vu, = 0 

and their bi-Hamiltonian structures was explored. The concept of bi-Hamiltonian 
structure was first published by Magri (1978) as a way of illuminating the infinite 
sequence of conserved densities and symmetries of the various ‘completely integrable’ 
equations such as K d v ,  M K d v ,  NLS, etc. The sww are a sort of classical limit of NLS, 

but in practice this amounts to dropping higher-order terms after a Madelung (1927) 
type change of variables. It turns out that the Miura transformation for NLS has its 
analogue in sww. There is a corresponding modified sww (MSWW) and the relationship 
of the bi-Hamiltonian structures is analogous to the situation for K d v  and M K d v .  This 
relationship is a special case of the general Miura maps in Kupershmidt’s work, but 
it is a concrete and simple example of the phenomenon in the case of matrix Hamiltonian 
operators. 

2. The Miura map for sww 

The change of variables is given by 
2 2  

U = E p U - E  p v = U. 
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The resulting equations are 

U, + uu, + ( E P U  - 2 p 2 ) \ .  = 0 PI + ( P U ) ,  - (b2), = 0 

and shall be called MSWW. These are the 'classical limit' of one of the M N L S  to be 
found in Clarkson and  Cosgrave (1987) or Kundu (1984). The pressure EPU - &'p2 
depends on momentum pu and there is a new term - ; ~ p *  in the density flux. The 
linear Hamiltonian structure 

of these modified equations must go over to the non-linear structure of sww whose 
existence was first discovered by Nutku (1987). The Hamiltonian structure in the old 
variables is then 

0  ED D 1 
& u - Z ~ ' p ) (  D O ) ( O  E U : ; E ~ ~ ) ( ~ : ) [ : ]  

where the Jacobian of the change of variables enters in an  obvious way. After some 
surprising algebra in the matrix operators, Nutku's celebrated non-linear Hamiltonian 
structure is obtained: 

Of course, a non-linear Hamiltonian structure by itself is not amazing, but if the same 
system of equations also has a linear structure or a second non-linear one then this is 
the case of a bi-Hamiltonian structure. The linear structure for SWWE is the simple 

3. Generalisation to other first-order systems 

A result of Dubrovin and  Novikov (1983) is that any first-order Hamiltonian system 

where J is a first-order, possibly non-linear, matrix Hamiltonian operator, can be 
reduced to a system with a linear Hamiltonian structure by a change of variables 
p =f(r, s), q = g ( r ,  s). The new system is 

where the opeiator 

is now linear. If the original p q  system also had a linear Hamiltonian structure and  
thus a bi-Hamiltonian structure then the transformation r = h (  p ,  q ) ,  s = k ( p ,  q )  would 
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be a ‘Miura map’. The point of this is that bi-Hamiltonian structures and Miura maps 
always occur at  exactly the same time for first-order systems. The number of dependent 
variables can be more than two since they can be so in the Dubrovin-Novikov result. 

According to Nutku’s work, the equations of gas dynamics 

U, + uu, + u y - 2 u ,  = 0 

U, + uu, + uu, = 0 

have bi-Hamiltonian structures and must thus have Miura map and  ‘modified’ gas 
dynamic analogues, when the Dubrovin- Novikov transformations are found. 
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